Function: Mean (AM, GM, HM)
- Calculate AM, GM and HM of a numeric vector using the following formula.
Arithmetic Mean (AM)
\[ \large AM = (x_1 + x_2 + ... + x_n)/n = \frac{1}{n}\sum\limits_{i=1}^{n} x_{i}\]
Geometric Mean (GM)
\[ \large GM = \sqrt[n]{(x_1 x_2 ... x_n)} = \left( \prod \limits_{i=1}^{n} x_{i} \right) ^{\frac{1}{n}} \]
Harmonic Mean (HM)
\[ \large HM = \frac{n}{(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})} = \frac{1}{\frac{1}{n}\sum\limits_{i=1}^{n} \frac{1}{x_i}}\]
Functions: Modular approach
Note: The following script is for demonstration only to explain the structure of a function and modular approach to function call.
We are expanding all base functions without any obvious advantages here. A possible optimal version is shown in the next section.
Code
fn_n = function(x, na.rm = FALSE) ifelse(na.rm, length(na.omit(x)), length(x))
fn_sum = function(x, ...) sum(x, ...)
fn_prod = function(x, ...) prod(x, ...)
fn_suminv = function(x, ...) sum(1/x, ...)
fn_AM = function(x, ...) {
out = fn_sum(x, ...)/fn_n(x, ...)
return(out)
}
fn_GM = function(x, ...) {
out = fn_prod(x, ...)^(1/fn_n(x, ...))
return(out)
}
fn_HM = function(x, ...) {
out = fn_n(x, ...)/fn_suminv(x, ...)
return(out)
}
fn_Mean = function(x, ...) {
n = fn_n(x, ...)
AM = fn_AM(x, ...)
GM = fn_GM(x, ...)
HM = fn_HM(x, ...)
Mean = list(n = n, AM = AM, GM = GM, HM = HM)
return(Mean)
}
Data
Code
A = c(11, 12, 15, 14, 18)
B = c(NA, 12, 15, 14, 18)
Function call 1
Code
A_mean = fn_Mean(A)
A_mean
$n
[1] 5
$AM
[1] 14
$GM
[1] 13.79155
$HM
[1] 13.5909
Function call 2
Code
B_mean = fn_Mean(B, na.rm = TRUE)
B_mean
$n
[1] 4
$AM
[1] 14.75
$GM
[1] 14.5938
$HM
[1] 14.44126
Optimal version
We have all base functions available; a possible optimal version of the above function can be written as shown below.
Code
fn_Mean = function(x, ...) {
fn_n = function(x, na.rm = FALSE) ifelse(na.rm, length(na.omit(x)), length(x))
n = fn_n(x, ...)
AM = mean(x, ...)
GM = exp(mean(log(x), ...))
HM = 1/mean(1/x, ...)
Mean = list(n = n, AM = AM, GM = GM, HM = HM)
return(Mean)
}