Section 27 Estimates: Coefficients
27.1 Estimates: Effects
\[ \large fm \leftarrow lm(SBP \sim BMI, \space data=BP) \]
\[ \large summary(fm) \]
Call:
lm(formula = SBP ~ BMI, data = BP)
Residuals:
Min 1Q Median 3Q Max
-8.3636 -2.1681 0.1586 2.1492 6.5777
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.20368 1.48011 24.46 <2e-16 ***
BMI 2.63229 0.05903 44.59 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.756 on 498 degrees of freedom
Multiple R-squared: 0.7997, Adjusted R-squared: 0.7993
F-statistic: 1989 on 1 and 498 DF, p-value: < 2.2e-16
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | 36.2037 | 1.4801 | 24.4601 | 0 |
BMI | 2.6323 | 0.0590 | 44.5940 | 0 |
27.2 Explanation
Statistical Model
\[ \large y_{i} = \beta_0 + \beta_1 x_{i} + \epsilon_{i} \]
\(\beta_1\) Estimates & SE
\[ \large \hat \beta_1 = \frac{\sum\limits_{i=1}^{n}(x_i-\bar x)(y_i-\bar y)}{\sum\limits_{i=1}^{n}(x_i-\bar x)^2} = \frac{S_{xy}}{S_{xx}} \]
\[ \large Var(\hat \beta_1) = \frac{\hat\sigma^2}{\sum\limits_{i=1}^{n}(x_i-\bar x)^2} = \frac{\hat\sigma^2}{S_{xx}} \]
\[ \large SE(\hat \beta_1) = \sqrt {Var(\hat \beta_1)} \]
\(\beta_0\) Estimates & SE
\[ \large \hat \beta_0 = \bar y - \hat \beta_1 \bar x \]
\[ \large Var(\hat \beta_0) = \hat\sigma^2 \left[ \frac{1}{n} + \frac{\bar x^2}{\sum\limits_{i=1}^{n}(x_i-\bar x)^2} \right] = \hat\sigma^2 \left[ \frac{1}{n} + \frac{\bar x^2}{S_{xx}} \right] \]
\[ \large SE(\hat \beta_0) = \sqrt {Var(\hat \beta_0)} \]
Here,
\[ \large \bar{x} = \frac{1}{n}\sum\limits_{i=1}^{n} x_{i} \]
\[ \large \bar{y} = \frac{1}{n}\sum\limits_{i=1}^{n} y_{i} \]
\[ \large \hat\sigma^2 = Var(\hat\epsilon) \]