Section 29 Estimates: Confidence Intervals
29.1 Estimates: Effects
\[ \large fm \leftarrow lm(SBP \sim BMI, \space data=BP) \]
\[ \large summary(fm) \]
\[ \large confint(fm) \]
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | 36.2037 | 1.4801 | 24.4601 | 0 |
BMI | 2.6323 | 0.0590 | 44.5940 | 0 |
2.5 % | 97.5 % | |
---|---|---|
(Intercept) | 33.2956 | 39.1117 |
BMI | 2.5163 | 2.7483 |
29.2 Explanation
Statistical Model
\[ \large y_{i} = \beta_0 + \beta_1 x_{i} + \epsilon_{i} \]
95% Confidence Interval
\[ \large CI_{0.95}(\hat \beta_1) = \left[ \hat\beta_1 \pm t_{0.025, df_{residual}} * SE(\hat\beta_1) \right]\]
95% Confidence Interval
\[ \large CI_{0.95}(\hat \beta_0) = \left[ \hat\beta_0 \pm t_{0.025, df_{residual}} * SE(\hat\beta_0) \right]\]