10 Final LMM: Diagnostics
10.1 Model assumptions
\(\Huge u_{0i} \sim N(0, \sigma_P^2)\)
\(\Huge e_{ij} \sim N(0, \sigma_e^2)\)
10.2 SPSS inputs
Figure: Display parameter predictions for random effects

Figure: Save predicted values and residuals

10.3 SPSS: Script
MIXED SBP BY Sex Group WITH SBP0 Age BMI Time /CRITERIA = DFMETHOD(SATTERTHWAITE) CIN(95) MXITER(100) MXSTEP(10)
SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE)
LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
/FIXED = Sex Group SBP0 Age BMI Time | SSTYPE(3)
/METHOD = REML
/PRINT = G R SOLUTION
/RANDOM = INTERCEPT | SUBJECT(ID) COVTYPE(VC) SOLUTION
/EMMEANS = TABLES(OVERALL)
/EMMEANS = TABLES(Sex)
/EMMEANS = TABLES(Group)
/SAVE=FIXPRED SEFIXP PRED SEPRED RESID.
10.4 Model outputs
10.4.1 Histogram of residuals

10.4.2 Q-Q plot of residuals

10.4.3 Plot of residuals against fitted values

10.4.4 Q-Q plot of random effects

