Section 36 MLR - Interaction of Continuous variables: lm Outputs


36.1 Statistical Model

\[ \large y_{i} = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}x_{2i} + \epsilon_{i} \]

\[ \large fm \leftarrow lm(SBP \sim BMI + Age + BMI:Age, \space data=BP) \]


\[ \large anova(fm) \]

Df Sum Sq Mean Sq F value Pr(>F)
BMI 1 15103.0386 15103.0386 2177.7953 0.0000
Age 1 335.4035 335.4035 48.3638 0.0000
BMI:Age 1 6.9906 6.9906 1.0080 0.3159
Residuals 496 3439.7664 6.9350 NA NA
Total 499 18885.1991 NA NA NA


36.2 Estimates: Effects

\[ \large summary(fm) \]

Estimate Std. Error t value Pr(>|t|)
(Intercept) -69.4019 58.7423 -1.1815 0.2380
BMI 4.7145 2.3746 1.9854 0.0477
Age 2.2592 1.1748 1.9231 0.0550
BMI:Age -0.0475 0.0473 -1.0040 0.3159


36.3 Estimates: Effects with centered variables

BP <- read.csv('data/BP.csv')

BP$cBMI <- scale(BP$BMI, center=mean(BP$BMI), scale=1)
BP$cAge <- scale(BP$Age, center=mean(BP$Age), scale=1)

fm <- lm(SBP ~ cBMI + cAge + cBMI:cAge, data=BP)

\[ \large summary(fm) \]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 102.0359 0.1308 780.0545 0.0000
cBMI 2.3370 0.0713 32.7788 0.0000
cAge 1.0719 0.1578 6.7908 0.0000
cBMI:cAge -0.0475 0.0473 -1.0040 0.3159


36.4 Plot

Note the slight difference in slopes due to Age for different values of BMI. As shown in the plot as well as from the model outcomes, the difference is not statistically significant. We will possibly remove the interaction term from the final model. At this stage, however, we need to investigate the model further along with other predictors. The green dashed vertical lines shows the mean Age of the population. The mean BMI of the population is approximately 25.