Section 22 MLR: Coefficients
Multiple Linear Regression: Coefficients
22.1 Estimates: Effects
\[ \large fm \leftarrow lm(SBP \sim BMI + Age, \space data=BP) \]
\[ \large summary(fm) \]
Call:
lm(formula = SBP ~ BMI + Age, data = BP)
Residuals:
Min 1Q Median 3Q Max
-8.6030 -2.0345 0.1196 1.9800 6.8630
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.83438 6.91013 -1.568 0.118
BMI 2.33147 0.07108 32.799 < 2e-16 ***
Age 1.09032 0.15678 6.954 1.12e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.633 on 497 degrees of freedom
Multiple R-squared: 0.8175, Adjusted R-squared: 0.8168
F-statistic: 1113 on 2 and 497 DF, p-value: < 2.2e-16
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | -10.8344 | 6.9101 | -1.5679 | 0.1175 |
BMI | 2.3315 | 0.0711 | 32.7990 | 0.0000 |
Age | 1.0903 | 0.1568 | 6.9544 | 0.0000 |
22.2 Explanation
Statistical Model
\[ \large y_{i} = a + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_{i} \]
\[ \large \hat\sigma^2 = Var(\hat\epsilon) = RSS/(n-p-1) = MSE \]
22.3 Hypothesis testing
\[ \large H_O: \pmb\beta = 0 \] \[ \large H_A: \pmb\beta \ne 0 \]
Test Statistic under the Null Hypothesis
Regression coefficients for k
-th predictors
\[ \large \hat\beta_k / SE(\hat\beta_k) \sim t_{df_{residual}} \]
95% Confidence Interval of k
-th coefficients
\[ \large CI_{0.95}(\hat \beta_k) = \left[ \hat\beta_k \pm t_{0.025, df_{residual}} * SE(\hat\beta_k) \right]\]