Section 22 MLR: Coefficients
Multiple Linear Regression: Coefficients
22.1 Estimates: Effects
\[ \large fm \leftarrow lm(SBP \sim BMI + Age, \space data=BP) \]
\[ \large summary(fm) \]
Call:
lm(formula = SBP ~ BMI + Age, data = BP)
Residuals:
    Min      1Q  Median      3Q     Max 
-8.6030 -2.0345  0.1196  1.9800  6.8630 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -10.83438    6.91013  -1.568    0.118    
BMI           2.33147    0.07108  32.799  < 2e-16 ***
Age           1.09032    0.15678   6.954 1.12e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.633 on 497 degrees of freedom
Multiple R-squared:  0.8175,    Adjusted R-squared:  0.8168 
F-statistic:  1113 on 2 and 497 DF,  p-value: < 2.2e-16| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | -10.8344 | 6.9101 | -1.5679 | 0.1175 | 
| BMI | 2.3315 | 0.0711 | 32.7990 | 0.0000 | 
| Age | 1.0903 | 0.1568 | 6.9544 | 0.0000 | 
22.2 Explanation
Statistical Model
\[ \large y_{i} = a + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_{i} \]
\[ \large \hat\sigma^2 = Var(\hat\epsilon) = RSS/(n-p-1) = MSE \]
22.3 Hypothesis testing
\[ \large H_O: \pmb\beta = 0 \] \[ \large H_A: \pmb\beta \ne 0 \]
Test Statistic under the Null Hypothesis
Regression coefficients for k-th predictors
\[ \large \hat\beta_k / SE(\hat\beta_k) \sim t_{df_{residual}} \]
95% Confidence Interval of k-th coefficients
\[ \large CI_{0.95}(\hat \beta_k) = \left[ \hat\beta_k \pm t_{0.025, df_{residual}} * SE(\hat\beta_k) \right]\]