Section 12 Numeric: Descriptive Statistics
12.1 Descriptive statistics
Function | Explanation |
---|---|
length | Number of elements in a vector |
sum | Sum of the values in a vector |
min | Minimum of a vector |
max | Maximum of a vector |
mean | Mean of the values in a vector |
median | Median of the values in a vector |
quantile | Quantile of a vector |
range | Range (min, max) of a vector |
var | Variance |
sd | Standard deviation |
12.2 Central tendency of data
Mean
Median
Mode
Quartiles
Median Absolute Deviation (MAD): Compute the median absolute deviation, i.e., the median of the absolute deviations from the median, and (by default) adjust by a factor for asymptotically normal consistency.
Box plot stats: Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data.
12.3 Dispersion of data
- Range
- Inter-quartile range
- Standard Deviation
12.4 Example 1
12.4.1 Central tendency of data
x <- c(0, 2, 4, 6, NA, 8, 4, 5, 15, 11, 4, 7)
mean(x, na.rm=TRUE)
median(x, na.rm=TRUE)
Mode <- function(x) {
ux <- unique(x)
# tab <- ux[which.max(tabulate(match(x, ux)))]
tab <- tabulate(match(x, ux))
modex <- ux[tab == max(tab)]
return(modex)
}
Mode(x)
quantile(x=x, probs=c(0.25,0.50,0.75), na.rm=TRUE)
mad(x, na.rm=TRUE)
fivenum(x, na.rm = TRUE)
12.5 Example 2
12.5.1 Dispersion of data
x <- c(0, 2, 4, 6, NA, 8, 4, 5, 15, 11, 4, 7)
range(x, na.rm=TRUE)
sd(x, na.rm=TRUE)
IQR(x=x, na.rm=TRUE)
rX <- quantile(x=x, probs=c(0.25,0.50,0.75), na.rm=TRUE)
str(rX)
unname(rX[3] - rX[1])