Section 18 One Numeric: geom_density
The function geom_density
computes kernel density estimates.
18.1 Example 1:
data(iris)
?geom_density
# geom_density
g <- ggplot(data=iris, mapping=aes(Sepal.Length))
g <- g + geom_density()
g
# fill & colour
g <- ggplot(data=iris, mapping=aes(Sepal.Length))
g <- g + geom_density(fill='lightblue', colour='purple')
g
# alpha, labs, theme_bw()
g <- ggplot(data=iris, mapping=aes(Sepal.Length))
g <- g + geom_histogram(mapping=aes(y=..density..),
binwidth=0.10, fill='white', colour='blue')
g <- g + geom_density(alpha=0.2, fill='lightgreen', colour='purple')
g <- g + labs(title='Histogram & Density plot of Sepal Length',
subtitle='Based on Iris data',
x='Sepal Length (cm)',
y='Density')
g + theme_bw()
18.2 Example 2:
data(warpbreaks)
Draw a density plot of the variable
breaks
Discuss the density plot
Transform the data using log-transformation and redraw the density plot
Overlay the histogram and density plot for the data