Section 14 Measures of Spread

Estimator of dispersion of the data

14.1 Range

  • Range = Max - Min

14.2 Interquartile range

  • IQR = Q3 - Q1

14.3 Mean Absolute Deviation (MAD)

Mean absolute deviation around the mean or average absolute deviation

\[ \Huge MAD = \frac{1}{n}\sum\limits_{i=1}^{n} |(x_i-\bar{x})| \]

  • Alternative forms: - Mean absolute deviation around the median - Median absolute deviation around the mean - Median absolute deviation around the median


14.4 Variance

\[ \large Var(x) = s_x^2 = \frac{1}{n}[(x_1-\bar{x})^2 + (x_2-\bar{x})^2 + ... + (x_n-\bar{x})^2] \]

\[ \Huge Var(x) = s_x^2 = \frac{1}{n}\sum\limits_{i=1}^{n} (x_i-\bar{x})^2 \]


14.5 Standard Deviation

\[ \Huge s_x = \sqrt{s_x^2} \]

  • Two Definitions of Variance

    • Population Variance
    • Sample Variance


Population Variance

\[ \Huge Var(x) = s_x^2 = \frac{1}{n}\sum\limits_{i=1}^{n} (x_i-\bar{x})^2 \]


Sample Variance

\[ \Huge Var(x) = s_x^2 = \frac{1}{n-1}\sum\limits_{i=1}^{n} (x_i-\bar{x})^2 \]

  • Centering and Scaling of data - Mean - Variance - Standard Deviation


14.6 Coefficient of variation

\[ \Huge CV = (s / \bar{x})*100 \]