Section 55 Normal Distribution: PDF
55.1 Probability Density Function
The Normal distribution is characterized by two parameters:
the mean, \(\mu\)
the variance, \(\sigma^2\)
We can write: \[ \large X \sim N(\large\mu, \sigma^2) \]
If the random variable \(X\) follows Normal distribution with parameters \(-\infty < \mu < +\infty\) and \(\sigma > 0\), then the probability density function of \(X\) is:
\[ \Huge f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}({\frac{x-\mu}{\sigma}})^2} \]